4766 Statistics 1

$\begin{aligned} & \text { Q1 } \\ & \text { (i) } \end{aligned}$	Mean $=7.35$ (or better) Standard deviation: 3.69-3.70 (awfw) Allow $\mathrm{s}^{2}=13.62$ to 13.68 Allow rmsd $=3.64-3.66$ (awfw) After B0, B0 scored then if at least 4 correct mid-points seen or used. $\{1.5,4,6,8.5,15\}$ Attempt of their mean $=\frac{\sum f x}{44}$, with $301 \leq \mathrm{fx} \leq 346$ and fx strictly from mid-points not class widths or top/lower boundaries.	B2cao $\sum f x=323.5$ B2cao $\sum f x^{2}=2964.25$ (B1) for variance s.o.i.o (B1) for rmsd (B1) mid-points (B1) $6.84 \leq$ mean ≤ 7.86	4
(ii)	Upper limit $=7.35+2 \times 3.69=14.73$ or 'their sensible mean' $+2 \times$ 'their sensible s.d.' So there could be one or more outliers	$\begin{aligned} & \text { M1 (with s.d. < mean) } \\ & \text { E1dep on B2, B2 } \\ & \text { earned and comment } \end{aligned}$	2
		TOTAL	6
$\begin{aligned} & \text { Q2 } \\ & \text { (i) } \end{aligned}$	$P(W) \times P(C)=0.20 \times 0.17=0.034$ $P(W \cap C)=0.06$ (given in the question) Not equal so not independent (Allow $0.20 \times 0.17 \neq 0.06$ or $\neq \mathrm{p}(\mathrm{W} \cap \mathrm{C})$ so not independent).	M1 for multiplying or 0.034 seen A1 (numerical justification needed)	2
(ii)	The last two G marks are independent of the labels	G1 for two overlapping circles labelled G1 for 0.06 and either 0.14 or 0.11 in the correct places G1 for all 4 correct probs in the correct places (including the 0.69) NB No credit for Karnaugh maps here	3
(iii)	$\mathrm{P}(W \mid C)=\frac{\mathrm{P}(W \cap C)}{\mathrm{P}(\mathrm{C})}=\frac{0.06}{0.17}=\frac{6}{17}=0.353(\text { awrt } 0.35)$	M1 for 0.06 / 0.17 A1 cao	2

(iv)	Children are more likely than adults to be able to speak Welsh or 'proportionally more children speak Welsh than adults' Do not accept: 'more Welsh children speak Welsh than adults'	E1FT Once the correct idea is seen, apply ISW	1
		TOTAL	8
$\begin{aligned} & \hline \text { Q3 } \\ & \text { (i) } \end{aligned}$	(A) $0.5+0.35+\boldsymbol{p}+\boldsymbol{q}=1$ $\text { so } \boldsymbol{p}+\boldsymbol{q}=0.15$ (B) $0 \times 0.5+1 \times 0.35+2 \boldsymbol{p}+3 \boldsymbol{q}=0.67$ $\text { so } 2 \boldsymbol{p}+3 \boldsymbol{q}=0.32$ (C) from above $2 \boldsymbol{p}+2 \boldsymbol{q}=0.30$ $\text { so } \boldsymbol{q}=0.02, \boldsymbol{p}=0.13$	B1 $p+q$ in a correct equation before they reach $p+q=0.15$ B1 $2 p+3 q$ in a correct equation before they reach $2 p+3 q=0.32$ (B1) for any 1 correct answer B2 for both correct answers	1 1 2
(ii)	$\begin{aligned} & E\left(X^{2}\right)=0 \times 0.5+1 \times 0.35+4 \times 0.13+9 \times 0.02=1.05 \\ & \operatorname{Var}(X)=\text { 'their } 1.05 '-0.67^{2}=0.6011(\text { awrt } 0.6) \end{aligned}$ (M1, M1 can be earned with their p^{+}and q^{+}but not A mark)	M1 $\Sigma x^{2} p$ (at least 2 non zero terms correct) M1dep for (-0.67^{2}), provided $\operatorname{Var}(X)>0$ A1 cao (No n or n-1 divisors)	3
		TOTAL	7
Q4 (i)	$X \sim \mathrm{~B}(8,0.05)$ (A) $\mathrm{P}(\boldsymbol{X}=0)=0.95^{8}=0.6634 \quad 0.663$ or better Or using tables $\mathrm{P}(\boldsymbol{X}=0)=0.6634$ (B) $\mathrm{P}(\boldsymbol{X}=1)=\binom{8}{1} \times 0.05 \times 0.95^{7}=0.2793$ $\mathrm{P}(X>1)=1-(0.6634+0.2793)=0.0573$ Or using tables $\mathrm{P}(X>1)=1-0.9428=0.0572$	M1 $0.95^{8} \mathrm{~A} 1 \mathrm{CAO}$ Or B2 (tables) M1 for $\mathrm{P}(X=1)$ (allow 0.28 or better) M1 for $1-\mathrm{P}(X \leq 1)$ must have both probabilities A1cao (0.0572 0.0573) M1 for $\mathrm{P}(X \leq 1) 0.9428$ M1 for $1-\mathrm{P}(X \leq 1)$ A1 cao (must end in...2)	2 3
(ii)	Expected number of days $=250 \times 0.0572=14.3$ awrt	M1 for $250 \times \operatorname{prob}(\mathrm{B})$ A1 FT but no rounding at end	2
		TOTAL	7

	Section B		
$\begin{aligned} & \text { Q6 } \\ & \text { (i) } \end{aligned}$	(B) Either: All 5 case $\mathrm{P}($ at least one England $)=$ $\begin{aligned} & (0.79 \times 0.20)+(0.79 \times 0.01)+(0.20 \times 0.79)+(0.01 \times 0.79)+ \\ & (0.79 \times 0.79) \\ & =0.158+0.0079+0.158+0.0079+0.6241=0.9559 \end{aligned}$ Or $\mathrm{P}(\text { at least one England) }=1-\mathrm{P} \text { (neither England) }$ $=1-(0.21 \times 0.21)=1-0.0441=0.9559$ or listing all $\begin{aligned} & =1-\{(0.2 \times 0.2)+(0.2 \times 0.01)+(0.01 \times 0.20)+(0.01 x \\ & 0.01)\} \\ & =1-\left({ }^{* *}\right) \\ & =1-\{0.04+0.002+0.002+0.0001) \\ & =1-0.0441 \\ & =0.9559 \end{aligned}$ Or: All 3 case P(at least one England) $=$ $=0.79 \times 0.21+0.21 \times 0.79+0.79^{2}$ $=0.1659+0.1659+0.6241$ $=0.9559$ (C)Either $0.79 \times 0.79+0.79 \times 0.2+0.2 \times 0.79+0.2 \times 0.2=0.9801$ Or $0.99 \times 0.99=0.9801$ Or $\begin{aligned} & \begin{array}{l} 1-\{0.79 \times 0.01+0.2 \times 0.01+0.01 \times 0.79+0.01 \times 0.02+ \\ \left.0.01^{2}\right\} \\ = \\ \quad= \\ \quad \end{array}=0.9801 \end{aligned}$	M1 for multiplying A1cao M1 for any correct term (3case or 5case) M1 for correct sum of all 3 (or of all 5) with no extras A1cao (condone 0.96 www) Or M1 for 0.21×0.21 or for (**) fully enumerated or 0.0441 seen M1dep for 1 - ($1^{\text {st }}$ part) A1cao See above for 3 case M1 for sight of all 4 correct terms summed A1 cao (condone 0.98 www) or M1 for 0.99×0.99 A1cao Or M1 for everything 1 - \{.....\} A1cao	2
(ii)	$\begin{aligned} & \begin{array}{l} \mathrm{P} \text { (both the rest of the UK \| neither overseas) } \\ \quad=\frac{\mathrm{P}(\text { the rest of the UK and neither overseas })}{\mathrm{P}(\text { neither overseas })} \\ \quad=\frac{0.04}{0.9801}=0.0408 \end{array} \\ & \left\{\text { Watch for: } \frac{\operatorname{answer}(A)}{\operatorname{answer}(C)} \text { as evidence of method }(\mathrm{p}<1)\right\} \end{aligned}$	M1 for numerator of 0.04 or 'their answer to (i)(A)' M1 for denominator of 0.9801 or 'their answer to (i) (C)' A1 FT $(0<p<1) 0.041$ at least	3

(iii)	(A) $\begin{aligned} \text { Probability } & =1-0.79^{5} \\ & =1-0.3077 \\ & =0.6923 \text { (accept awrt } 0.69 \text {) } \end{aligned}$ see additional notes for alternative solution (B) $1-0.79^{n}>0.9$ EITHER: $1-0.79^{n}>0.9$ or $0.79^{n}<0.1$ (condone $=$ and \geq throughout) but not reverse inequality $\mathrm{n}>\frac{\log 0.1}{\log 0.79}$, so $\mathrm{n}>9.768 \ldots$ Minimum $n=10$ Accept $n \geq 10$ OR (using trial and improvement): Trial with 0.79^{9} or 0.79^{10} $\begin{aligned} & 1-0.79^{9}=0.8801(<0.9) \text { or } 0.79^{9}=0.1198(>0.1) \\ & 1-0.79^{10}=0.9053(>0.9) \text { or } 0.79^{10}=0.09468(<0.1) \end{aligned}$ Minimum $n=10$ Accept $n \geq 10$ NOTE: $n=10$ unsupported scores SC1 only	M1 for 0.79^{5} or 0.3077... M1 for $1-0.79^{5}$ dep A1 CAO M1 for equation/inequality in n (accept either statement opposite) M1(indep) for process of using logs i.e. $\frac{\log a}{\log b}$ A1 CAO M1(indep) for sight of 0.8801 or 0.1198 M1 (indep) for sight of 0.9053 or 0.09468 A1 dep on both M's cao	3
		TOTAL	16

$\begin{aligned} & \hline \text { Q7 } \\ & \text { (i) } \\ & \hline \end{aligned}$	Positive	B1	1
(ii)	$\begin{aligned} & \text { Number of people }=20 \times 33(000)+5 \times 58(000) \\ & \quad=660(000)+290(000)=950000 \end{aligned}$	M1 first term M1(indep) second term A1 cao NB answer of 950 scores M2AO	3
(iii)	(A) $a=1810+340=2150$ (B) Median = age of $1385\left(000^{\text {th }}\right)$ person or 1385.5 (000) Age 30, cf = 1240 (000); age 40, cf = 1810 (000) Estimate median $=(30)+\frac{\mathbf{1 4 5}}{\mathbf{5 7 0}} \times 10$ Median $=32.5$ years ($32.54 \ldots$...) If no working shown then 32.54 or better is needed to gain the M1A1. If 32.5 seen with no previous working allow SC1	M1 for sum A1 cao 2150 or 2150 thousand but not 215000 B1 for 1385 (000) or 1385.5 M1 for attempt to interpolate $\frac{145 k}{570 k} \times 10$ (2.54 or better suggests this) A1 cao min 1dp	2 3
(iv)	Frequency densities: 56, 65, 77, 59, 45, 17 (accept 45.33 and 17.43 for 45 and 17)	B1 for any one correct B1 for all correct (soi by listing or from histogram) Note: all G marks below dep on attempt at frequency density, NOT frequency G1 Linear scales on both axes (no inequalities) G1 Heights FT their listed fds or all must be correct. Also widths. All blocks joined G1 Appropriate label for vertical scale eg 'Frequency density (thousands)', 'frequency (thousands) per 10 years', 'thousands of people per 10 years'. (allow key). OR f.d.	5

(v)	Any two suitable comments such as: Outer London has a greater proportion (or \%) of people under 20 (or almost equal proportion) The modal group in Inner London is 20-30 but in Outer London it is $30-40$ Outer London has a greater proportion (14\%) of aged 65+ All populations in each age group are higher in Outer London Outer London has a more evenly spread distribution or balanced distribution (ages) o.e.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	2
(vi)	```Mean increase \(\uparrow\) median unchanged (-) midrange increase \(\uparrow\) standard deviation increase \(\uparrow\) interquartile range unchanged. (-)```	Any one correct B1 Any two correct B2 Any three correct B3 All five correct B4	4
		TOTAL	20

